首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:On the Products of <svg xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg" style="vertical-align:-0.198pt;width:11.4px;" id="M1" height="16.35" version="1.1" viewBox="0 0 11.4 16.35" width="11.4"> <g transform="matrix(.022,-0,0,-.022,.062,16.025)"><path id="x1D458" d="M480 416q0 -21 -18 -41q-9 -11 -17 -7q-20 9 -42 9q-62 0 -140 -78q23 -69 88 -192q17 -31 27 -42t20 -11q16 0 62 46l17 -20q-64 -92 -119 -92q-35 0 -70 66q-41 73 -84 187q-36 -30 -62 -61q-27 -115 -35 -172q-41 -8 -78 -20l-6 6l140 612q7 28 0.5 34t-37.5 7l-34 1&#xA;l5 26q38 4 74 13.5t57 17t25 7.5q12 0 4 -32l-104 -443h2q35 38 97 93q39 35 65.5 56t62 41.5t58.5 20.5q19 0 30.5 -10t11.5 -22z"></path></g> </svg>-Fibonacci Numbers and <svg xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg" style="vertical-align:-0.198pt;width:11.4px;" id="M2" height="16.35" version="1.1" viewBox="0 0 11.4 16.35" width="11.4"> <g transform="matrix(.022,-0,0,-.022,.062,16.025)"><use xlink:href="#x1D458"></use></g> </svg>-Lucas Numbers
  • 本地全文:下载
  • 作者:Bijendra Singh ; Kiran Sisodiya ; Farooq Ahmad
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:2014
  • 卷号:2014
  • DOI:10.1155/2014/505798
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this paper we investigate some products of -Fibonacci and -Lucas numbers. We also present some generalized identities on the products of -Fibonacci and -Lucas numbers to establish connection formulas between them with the help of Binet's formula.
国家哲学社会科学文献中心版权所有