期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2014
卷号:111
期号:Supplement 3
页码:10873-10880
DOI:10.1073/pnas.1400838111
出版社:The National Academy of Sciences of the United States of America
摘要:Information transfer is a basic feature of life that includes signaling within and between organisms. Owing to its interactive nature, signaling can be investigated by using game theory. Game theoretic models of signaling have a long tradition in biology, economics, and philosophy. For a long time the analyses of these games has mostly relied on using static equilibrium concepts such as Pareto optimal Nash equilibria or evolutionarily stable strategies. More recently signaling games of various types have been investigated with the help of game dynamics, which includes dynamical models of evolution and individual learning. A dynamical analysis leads to more nuanced conclusions as to the outcomes of signaling interactions. Here we explore different kinds of signaling games that range from interactions without conflicts of interest between the players to interactions where their interests are seriously misaligned. We consider these games within the context of evolutionary dynamics (both infinite and finite population models) and learning dynamics (reinforcement learning). Some results are specific features of a particular dynamical model, whereas others turn out to be quite robust across different models. This suggests that there are certain qualitative aspects that are common to many real-world signaling interactions.