首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Heterogeneity in multiple transmission pathways: modelling the spread of cholera and other waterborne disease in networks with a common water source
  • 本地全文:下载
  • 作者:Suzanne L. Robertson ; Marisa C. Eisenberg ; Joseph H. Tien
  • 期刊名称:Journal of Biological Dynamics
  • 印刷版ISSN:1751-3758
  • 电子版ISSN:1751-3766
  • 出版年度:2013
  • 卷号:7
  • 期号:1
  • 页码:254-275
  • DOI:10.1080/17513758.2013.853844
  • 出版社:Taylor & Francis
  • 摘要:Formulae display: ? Mathematical formulae have been encoded as MathML and are displayed in this HTML version using MathJax in order to improve their display. Uncheck the box to turn MathJax off. This feature requires Javascript. Click on a formula to zoom. Many factors influencing disease transmission vary throughout and across populations. For diseases spread through multiple transmission pathways, sources of variation may affect each transmission pathway differently. In this paper we consider a disease that can be spread via direct and indirect transmission, such as the waterborne disease cholera. Specifically, we consider a system of multiple patches with direct transmission occurring entirely within patch and indirect transmission via a single shared water source. We investigate the effect of heterogeneity in dual transmission pathways on the spread of the disease. We first present a 2-patch model for which we examine the effect of variation in each pathway separately and propose a measure of heterogeneity that incorporates both transmission mechanisms and is predictive of R 0 . We also explore how heterogeneity affects the final outbreak size and the efficacy of intervention measures. We conclude by extending several results to a more general n -patch setting.
  • 关键词:epidemiology; heterogeneity; cholera; basic reproduction number; network; multiple transmission pathways
国家哲学社会科学文献中心版权所有