首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Modeling gating charge and voltage changes in response to charge separation in membrane proteins
  • 本地全文:下载
  • 作者:Ilsoo Kim ; Suman Chakrabarty ; Peter Brzezinski
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2014
  • 卷号:111
  • 期号:31
  • 页码:11353-11358
  • DOI:10.1073/pnas.1411573111
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Measurements of voltage changes in response to charge separation within membrane proteins can offer fundamental information on mechanisms of charge transport and displacement processes. A recent example is provided by studies of cytochrome c oxidase. However, the interpretation of the observed voltage changes in terms of the number of charge equivalents and transfer distances is far from being trivial or unique. Using continuum approaches to describe the voltage generation may involve significant uncertainties and reliable microscopic simulations are not yet available. Here, we attempt to solve this problem by using a coarse-grained model of membrane proteins, which includes an explicit description of the membrane, the electrolytes, and the electrodes. The model evaluates the gating charges and the electrode potentials (c.f. measured voltage) upon charge transfer within the protein. The accuracy of the model is evaluated by a comparison of measured voltage changes associated with electron and proton transfer in bacterial photosynthetic reaction centers to those calculated using our coarse-grained model. The calculations reproduce the experimental observations and thus indicate that the method is of general use. Interestingly, it is found that charge-separation processes with different spatial directions (but the same distance perpendicular to the membrane) can give similar observed voltage changes, which indicates that caution should be exercised when using simplified interpretation of the relationship between charge displacement and voltage changes.
  • 关键词:bacterial reaction center ; membrane potential ; electrogenicity ; proton/electron transfer
国家哲学社会科学文献中心版权所有