首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:RBF Neural Network Soft-Sensor Model of Electroslag Remelting Process Optimized by Artificial Fish Swarm Optimization Algorithm
  • 本地全文:下载
  • 作者:Jie-sheng Wang ; Shuang Han ; Yang Yang
  • 期刊名称:Advances in Mechanical Engineering
  • 印刷版ISSN:1687-8140
  • 电子版ISSN:1687-8140
  • 出版年度:2014
  • 卷号:2014
  • DOI:10.1155/2014/318195
  • 出版社:Sage Publications Ltd.
  • 摘要:For predicting the key technology index of electroslag remelting (ESR) process (the melting rate and cone purification coefficient of the consumable electrode), a radial basis function (RBF) neural network soft-sensor model optimized by the artificial fish swarm algorithm (AFSA) is proposed. Based on the technique characteristics of ESR production process, the auxiliary variables of soft-sensor model are selected. Then the AFSA is adopted to train the RBF neural network prediction model in order to realize the nonlinear mapping between input and output variables. Simulation results show that the model has better generalization and prediction accuracy, which can meet the online soft sensing requirement of ESR process real-time control.
国家哲学社会科学文献中心版权所有