首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Large Deviations Approach to Bayesian Nonparametric Consistency: the Case of Polya Urn Sampling
  • 本地全文:下载
  • 作者:Grendar, Marian ; Judge, George G. ; Niven, R.K.
  • 期刊名称:Journal of Food Distribution Research
  • 印刷版ISSN:0047-245X
  • 出版年度:2007
  • 期号:SUPPL
  • 出版社:Food Distribution Research Society
  • 摘要:The Bayesian Sanov Theorem (BST) identifies, under both correct and incorrect specification of infinite dimensional model, the points of concentration of the posterior measure. Utilizing this insight in the context of Polya urn sampling, Bayesian nonparametric consistency is established. Polya BST is also used to provide an extension of Maximum Non-parametric Likelihood and Empirical Likelihood methods to the Polya case.
  • 关键词:Polya L-divergence;Bayesian maximum (A posterior);Probability method;Maximum Non-Parametric Likelihood method;Empirical likelihood method
国家哲学社会科学文献中心版权所有