摘要:We propose a new authenticated key agreement scheme based on Blom’s scheme, but using multiple master keys and public keys in permutations to compute the private keys in each node. The computations are over a small prime field, and by storing them in a random order in the node, the private-public-master-key associations (PPMka) of the private keys are lost. If a node is captured, the PPMka of the private keys cannot be determined with certainty, making it difficult to begin to attack the scheme. We obtained analytical results to show that, using suitable keying parameters, the probability of discovering the correct PPMka can be made so small, that a very powerful adversary needs to capture the entire network of tens of thousands of nodes or expend an infeasible amount of effort to try all of the possible solutions. We verified our results using computer-simulated attacks on the scheme. The unknown PPMka enables our scheme to break free from the capture threshold of the original Blom’s scheme, so that it can be used in large networks of low-resource devices, such as sensor nodes.