期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2014
卷号:111
期号:38
页码:13790-13794
DOI:10.1073/pnas.1404623111
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceWe identify several common genetic variants associated with cognitive performance using a two-stage approach: we conduct a genome-wide association study of educational attainment to generate a set of candidates, and then we estimate the association of these variants with cognitive performance. In older Americans, we find that these variants are jointly associated with cognitive health. Bioinformatics analyses implicate a set of genes that is associated with a particular neurotransmitter pathway involved in synaptic plasticity, the main cellular mechanism for learning and memory. In addition to the substantive contribution, this work also serves to show a proxy-phenotype approach to discovering common genetic variants that is likely to be useful for many phenotypes of interest to social scientists (such as personality traits). We identify common genetic variants associated with cognitive performance using a two-stage approach, which we call the proxy-phenotype method. First, we conduct a genome-wide association study of educational attainment in a large sample (n = 106,736), which produces a set of 69 education-associated SNPs. Second, using independent samples (n = 24,189), we measure the association of these education-associated SNPs with cognitive performance. Three SNPs (rs1487441, rs7923609, and rs2721173) are significantly associated with cognitive performance after correction for multiple hypothesis testing. In an independent sample of older Americans (n = 8,652), we also show that a polygenic score derived from the education-associated SNPs is associated with memory and absence of dementia. Convergent evidence from a set of bioinformatics analyses implicates four specific genes (KNCMA1, NRXN1, POU2F3, and SCRT). All of these genes are associated with a particular neurotransmitter pathway involved in synaptic plasticity, the main cellular mechanism for learning and memory.