期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2014
卷号:111
期号:38
页码:E3948-E3956
DOI:10.1073/pnas.1407927111
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceThe isolation of an active formate hydrogenlyase is a breakthrough in understanding the molecular basis of bacterial hydrogen production. For over 100 years, Escherichia coli has been known to evolve H2 when cultured under fermentative conditions. Glucose is metabolized to formate, which is then oxidized to CO2 with the concomitant reduction of protons to H2 by a single complex called formate hydrogenlyase, which had been genetically, but never biochemically, characterized. In this study, innovative molecular biology and electrochemical experiments reveal a hydrogenase enzyme with the unique ability to sustain H2 production even under high partial pressures of H2. Harnessing bacterial H2 production offers the prospect of a source of fully renewable H2 energy, freed from any dependence on fossil fuel. Under anaerobic conditions, Escherichia coli can carry out a mixed-acid fermentation that ultimately produces molecular hydrogen. The enzyme directly responsible for hydrogen production is the membrane-bound formate hydrogenlyase (FHL) complex, which links formate oxidation to proton reduction and has evolutionary links to Complex I, the NADH:quinone oxidoreductase. Although the genetics, maturation, and some biochemistry of FHL are understood, the protein complex has never been isolated in an intact form to allow biochemical analysis. In this work, genetic tools are reported that allow the facile isolation of FHL in a single chromatographic step. The core complex is shown to comprise HycE (a [NiFe] hydrogenase component termed Hyd-3), FdhF (the molybdenum-dependent formate dehydrogenase-H), and three iron-sulfur proteins: HycB, HycF, and HycG. A proportion of this core complex remains associated with HycC and HycD, which are polytopic integral membrane proteins believed to anchor the core complex to the cytoplasmic side of the membrane. As isolated, the FHL complex retains formate hydrogenlyase activity in vitro. Protein film electrochemistry experiments on Hyd-3 demonstrate that it has a unique ability among [NiFe] hydrogenases to catalyze production of H2 even at high partial pressures of H2. Understanding and harnessing the activity of the FHL complex is critical to advancing future biohydrogen research efforts.