首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:EFFICIENT ALGORITHM FOR MINING FREQUENT ITEMSETS USING CLUSTERING TECHNIQUES
  • 本地全文:下载
  • 作者:D.Kerana Hanirex ; Dr.M.A.Dorai Rangaswamy
  • 期刊名称:International Journal on Computer Science and Engineering
  • 印刷版ISSN:2229-5631
  • 电子版ISSN:0975-3397
  • 出版年度:2011
  • 卷号:3
  • 期号:03
  • 页码:1028-1032
  • 出版社:Engg Journals Publications
  • 摘要:Now a days, Association rule plays an important role. The purchasing of one product when another product is purchased represents an association rule. The Apriori algorithm is the basic algorithm for mining massociation rules. This paper presents an efficient Partition Algorithm for Mining Frequent Itemsets(PAFI) using clustering. This algorithm finds the frequent itemsets by partitioning the database transactions into clusters. Clusters are formed based on the similarity measures between the transactions. Then it finds the frequent itemsets with the transactions in the clusters directly using improved Apriori algorithm which further reduces the number of scans in the database and hence improve the efficiency.
  • 关键词:Association rule;Apriori algorithm;frequent Itemset ;clustering
国家哲学社会科学文献中心版权所有