首页    期刊浏览 2024年11月15日 星期五
登录注册

文章基本信息

  • 标题:Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance
  • 本地全文:下载
  • 作者:Heavner, Benjamin D. ; Smallbone, Kieran ; Price, Nathan D.
  • 期刊名称:Database
  • 印刷版ISSN:1758-0463
  • 电子版ISSN:1758-0463
  • 出版年度:2013
  • 卷号:2013
  • DOI:10.1093/database/bat059
  • 出版社:Oxford University Press
  • 摘要:Updates to maintain a state-of-the art reconstruction of the yeast metabolic network are essential to reflect our understanding of yeast metabolism and functional organization, to eliminate any inaccuracies identified in earlier iterations, to improve predictive accuracy and to continue to expand into novel subsystems to extend the comprehensiveness of the model. Here, we present version 6 of the consensus yeast metabolic network (Yeast 6) as an update to the community effort to computationally reconstruct the genome-scale metabolic network of Saccharomyces cerevisiae S288c. Yeast 6 comprises 1458 metabolites participating in 1888 reactions, which are annotated with 900 yeast genes encoding the catalyzing enzymes. Compared with Yeast 5, Yeast 6 demonstrates improved sensitivity, specificity and positive and negative predictive values for predicting gene essentiality in glucose-limited aerobic conditions when analyzed with flux balance analysis. Additionally, Yeast 6 improves the accuracy of predicting the likelihood that a mutation will cause auxotrophy. The network reconstruction is available as a Systems Biology Markup Language (SBML) file enriched with Minimium Information Requested in the Annotation of Biochemical Models (MIRIAM)-compliant annotations. Small- and macromolecules in the network are referenced to authoritative databases such as Uniprot or ChEBI. Molecules and reactions are also annotated with appropriate publications that contain supporting evidence. Yeast 6 is freely available at http://yeast.sf.net/ as three separate SBML files: a model using the SBML level 3 Flux Balance Constraint package, a model compatible with the MATLAB® COBRA Toolbox for backward compatibility and a reconstruction containing only reactions for which there is experimental evidence (without the non-biological reactions necessary for simulating growth).Database URL: http://yeast.sf.net/
国家哲学社会科学文献中心版权所有