摘要:Given the current explosion of data within original publications generated in the field of genomics, a recognized bottleneck is the transfer of such knowledge into comprehensive databases. We have for years organized knowledge on transcriptional regulation reported in the original literature of Escherichia coli K-12 into RegulonDB (http://regulondb.ccg.unam.mx), our database that is currently supported by >5000 papers. Here, we report a first step towards the automatic biocuration of growth conditions in this corpus. Using the OntoGene text-mining system (http://www.ontogene.org), we extracted and manually validated regulatory interactions and growth conditions in a new approach based on filters that enable the curator to select informative sentences from preprocessed full papers. Based on a set of 48 papers dealing with oxidative stress by OxyR, we were able to retrieve 100% of the OxyR regulatory interactions present in RegulonDB, including the transcription factors and their effect on target genes. Our strategy was designed to extract, as we did, their growth conditions. This result provides a proof of concept for a more direct and efficient curation process, and enables us to define the strategy of the subsequent steps to be implemented for a semi-automatic curation of original literature dealing with regulation of gene expression in bacteria. This project will enhance the efficiency and quality of the curation of knowledge present in the literature of gene regulation, and contribute to a significant increase in the encoding of the regulatory network of E. coli.RegulonDB Database URL: http://regulondb.ccg.unam.mxOntoGene URL: http://www.ontogene.org