期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2014
卷号:111
期号:42
页码:15013-15018
DOI:10.1073/pnas.1414764111
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceMicrofluidic systems promise to improve the analysis and synthesis of materials, biological or otherwise, by lowering the required volume of fluid samples, offering a tightly controlled fluid-handling environment, and simultaneously integrating various chemical processes. To build these systems, designers depend on microfabrication techniques that restrict them to arranging their designs in two dimensions and completely fabricating their design in a single step. This study introduces modular, reconfigurable components containing fluidic and sensor elements adaptable to many different microfluidic circuits. These elements can be assembled to allow for 3D routing of channels. This assembly approach allows for the application of network analysis techniques like those used in classical electronic circuit design, facilitating the straightforward design of predictable flow systems. Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.