首页    期刊浏览 2025年07月16日 星期三
登录注册

文章基本信息

  • 标题:Statistical Power of Alternative Structural Models for Comparative Effectiveness Research: Advantages of Modeling Unreliability
  • 本地全文:下载
  • 作者:Coman, Emil N ; Iordache, Eugen ; Dierker, Lisa
  • 期刊名称:Journal of Modern Applied Statistical Methods
  • 出版年度:2014
  • 卷号:13
  • 期号:1
  • 页码:6
  • 出版社:Wayne State University
  • 摘要:The advantages of modeling the unreliability of outcomes when evaluating the comparative effectiveness of health interventions is illustrated. Adding an action-research intervention component to a regular summer job program for youth was expected to help in preventing risk behaviors. A series of simple two-group alternative structural equation models are compared to test the effect of the intervention on one key attitudinal outcome in terms of model fit and statistical power with Monte Carlo simulations. Some models presuming parameters equal across the intervention and comparison groups were under- powered to detect the intervention effect, yet modeling the unreliability of the outcome measure increased their statistical power and helped in the detection of the hypothesized effect. Comparative Effectiveness Research (CER) could benefit from flexible multi- group alternative structural models organized in decision trees, and modeling unreliability of measures can be of tremendous help for both the fit of statistical models to the data and their statistical power.
  • 关键词:comparative effectiveness research; quasi-experiment; structural equation modeling; measurement error; internal locus of control; behavioral change
国家哲学社会科学文献中心版权所有