首页    期刊浏览 2024年07月09日 星期二
登录注册

文章基本信息

  • 标题:Chemoselective tarantula toxins report voltage activation of wild-type ion channels in live cells
  • 本地全文:下载
  • 作者:Drew C. Tilley ; Kenneth S. Eum ; Sebastian Fletcher-Taylor
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2014
  • 卷号:111
  • 期号:44
  • 页码:E4789-E4796
  • DOI:10.1073/pnas.1406876111
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:SignificanceElectrically excitable cells, such as neurons, exhibit tremendous variation in their patterns of electrical signals. These variations arise from the collection of ion channels present in any specific cell, but understanding which ion channels are at the root of particular electrical signals remains a significant challenge. Here, we describe novel probes, derived from a tarantula venom peptide, that are able to report the activity of voltage-gated ion channels in living cells. This technology uses state-selective binding to optically monitor the activation of ion channels during cellular electrical signaling. Activity-reporting probes based on these prototypes could potentially identify when endogenous ion channels contribute to electrical signaling, thus facilitating the identification of ion channel targets for therapeutic drug intervention. Electrically excitable cells, such as neurons, exhibit tremendous diversity in their firing patterns, a consequence of the complex collection of ion channels present in any specific cell. Although numerous methods are capable of measuring cellular electrical signals, understanding which types of ion channels give rise to these signals remains a significant challenge. Here, we describe exogenous probes which use a novel mechanism to report activity of voltage-gated channels. We have synthesized chemoselective derivatives of the tarantula toxin guangxitoxin-1E (GxTX), an inhibitory cystine knot peptide that binds selectively to Kv2-type voltage gated potassium channels. We find that voltage activation of Kv2.1 channels triggers GxTX dissociation, and thus GxTX binding dynamically marks Kv2 activation. We identify GxTX residues that can be replaced by thiol- or alkyne-bearing amino acids, without disrupting toxin folding or activity, and chemoselectively ligate fluorophores or affinity probes to these sites. We find that GxTX-fluorophore conjugates colocalize with Kv2.1 clusters in live cells and are released from channels activated by voltage stimuli. Kv2.1 activation can be detected with concentrations of probe that have a trivial impact on cellular currents. Chemoselective GxTX mutants conjugated to dendrimeric beads likewise bind live cells expressing Kv2.1, and the beads are released by channel activation. These optical sensors of conformational change are prototype probes that can indicate when ion channels contribute to electrical signaling.
  • 关键词:voltage-gated ion channel ; potassium channel ; gating modifier ; fluorescence ; allostery
国家哲学社会科学文献中心版权所有