期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2014
卷号:111
期号:46
页码:E4997-E5006
DOI:10.1073/pnas.1415122111
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceThe brain is a large-scale network, not unlike many social or technological networks. Just like social networks, brain networks contain subnetworks or systems of highly related or interacting nodes (in the case of brains, nodes may represent neurons or brain areas). Using functional MRI to measure functional correlations between brain areas during periods of rest, we describe differences in brain network organization in a large group of individuals sampled across the healthy adult lifespan (20-89 y). We characterize a measure of system segregation, reflecting the degree to which the systems share connections among one another. Increasing age is accompanied by decreasing segregation of brain systems. Importantly, system segregation is predictive of measures of long-term memory function, independent of age. Healthy aging has been associated with decreased specialization in brain function. This characterization has focused largely on describing age-accompanied differences in specialization at the level of neurons and brain areas. We expand this work to describe systems-level differences in specialization in a healthy adult lifespan sample (n = 210; 20-89 y). A graph-theoretic framework is used to guide analysis of functional MRI resting-state data and describe systems-level differences in connectivity of individual brain networks. Young adults' brain systems exhibit a balance of within- and between-system correlations that is characteristic of segregated and specialized organization. Increasing age is accompanied by decreasing segregation of brain systems. Compared with systems involved in the processing of sensory input and motor output, systems mediating "associative" operations exhibit a distinct pattern of reductions in segregation across the adult lifespan. Of particular importance, the magnitude of association system segregation is predictive of long-term memory function, independent of an individual's age.