首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Stable expression and function of the inositol 1,4,5-triphosphate receptor requires palmitoylation by a DHHC6/selenoprotein K complex
  • 本地全文:下载
  • 作者:Gregory J. Fredericks ; FuKun W. Hoffmann ; Aaron H. Rose
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2014
  • 卷号:111
  • 期号:46
  • 页码:16478-16483
  • DOI:10.1073/pnas.1417176111
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:SignificanceThe stimulation of certain surface receptors on immune cells triggers the release of calcium (Ca2+) stored in the endoplasmic reticulum (ER). This Ca2+ flux is required for efficient activation and function of immune cells, and involves the ER membrane Ca2+ channel, the inositol 1,4,5-triphosphate receptor (IP3R). We found that stable expression of IP3R requires the addition of a fatty acid through a process called palmitoylation catalyzed by an enzyme complex composed of DHHC6 (letters represent the amino acids aspartic acid, histidine, histidine, and cysteine in the catalytic domain) and selenoprotein K (Selk) proteins. These findings provide new mechanistic insight into the selenium-sensitive fine-tuning of immune cell activation through posttranslational modification of the IP3R Ca2+ channel. This study also reveals a novel DHHC6/Selk enzyme complex responsible for regulating stable expression of the IP3R. Calcium (Ca2+) is a secondary messenger in cells and Ca2+ flux initiated from endoplasmic reticulum (ER) stores via inositol 1,4,5-triphosphate (IP3) binding to the IP3 receptor (IP3R) is particularly important for the activation and function of immune cells. Previous studies demonstrated that genetic deletion of selenoprotein K (Selk) led to decreased Ca2+ flux in a variety of immune cells and impaired immunity, but the mechanism was unclear. Here we show that Selk deficiency does not affect receptor-induced IP3 production, but Selk deficiency through genetic deletion or low selenium in culture media leads to low expression of the IP3R due to a defect in IP3R palmitoylation. Bioinformatic analysis of the DHHC (letters represent the amino acids aspartic acid, histidine, histidine, and cysteine in the catalytic domain) family of enzymes that catalyze protein palmitoylation revealed that one member, DHHC6, contains a predicted Src-homology 3 (SH3) domain and DHHC6 is localized to the ER membrane. Because Selk is also an ER membrane protein and contains an SH3 binding domain, immunofluorescence and coimmunoprecipitation experiments were conducted and revealed DHHC6/Selk interactions in the ER membrane that depended on SH3/SH3 binding domain interactions. DHHC6 knockdown using shRNA in stably transfected cell lines led to decreased expression of the IP3R and impaired IP3R-dependent Ca2+ flux. Mass spectrophotometric and bioinformatic analyses of the IP3R protein identified two palmitoylated cysteine residues and another potentially palmitoylated cysteine, and mutation of these three cysteines to alanines resulted in decreased IP3R palmitoylation and function. These findings reveal IP3R palmitoylation as a critical regulator of Ca2+ flux in immune cells and define a previously unidentified DHHC/Selk complex responsible for this process.
  • 关键词:selenium ; calcium ; immune ; endoplasmic reticulum ; palmitoylation
国家哲学社会科学文献中心版权所有