期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2014
卷号:111
期号:46
页码:16616-16621
DOI:10.1073/pnas.1406023111
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceThe song of the hermit thrush, a common North American songbird, is renowned for its apparent musicality and has attracted the attention of musicians and ornithologists for more than a century. Here we show that hermit thrush songs, like much human music, use pitches that are mathematically related by simple integer ratios and follow the harmonic series. Our findings add to a small but growing body of research showing that a preference for small-integer ratio intervals is not unique to humans and are thus particularly relevant to the ongoing nature/nurture debate about whether musical predispositions such as the preference for consonant intervals are biologically or culturally driven. Many human musical scales, including the diatonic major scale prevalent in Western music, are built partially or entirely from intervals (ratios between adjacent frequencies) corresponding to small-integer proportions drawn from the harmonic series. Scientists have long debated the extent to which principles of scale generation in human music are biologically or culturally determined. Data from animal "song" may provide new insights into this discussion. Here, by examining pitch relationships using both a simple linear regression model and a Bayesian generative model, we show that most songs of the hermit thrush (Catharus guttatus) favor simple frequency ratios derived from the harmonic (or overtone) series. Furthermore, we show that this frequency selection results not from physical constraints governing peripheral production mechanisms but from active selection at a central level. These data provide the most rigorous empirical evidence to date of a bird song that makes use of the same mathematical principles that underlie Western and many non-Western musical scales, demonstrating surprising convergence between human and animal "song cultures." Although there is no evidence that the songs of most bird species follow the overtone series, our findings add to a small but growing body of research showing that a preference for small-integer frequency ratios is not unique to humans. These findings thus have important implications for current debates about the origins of human musical systems and may call for a reevaluation of existing theories of musical consonance based on specific human vocal characteristics.