首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons
  • 本地全文:下载
  • 作者:Brigitte Pfeiffer-Guglielmi ; Benjamin Dombert ; Sibylle Jablonka
  • 期刊名称:BMC Neuroscience
  • 印刷版ISSN:1471-2202
  • 电子版ISSN:1471-2202
  • 出版年度:2014
  • 卷号:15
  • 期号:1
  • 页码:1
  • DOI:10.1186/1471-2202-15-70
  • 语种:English
  • 出版社:BioMed Central
  • 摘要:Background Localization of mRNAs encoding cytoskeletal or signaling proteins to neuronal processes is known to contribute to axon growth, synaptic differentiation and plasticity. In addition, a still increasing spectrum of mRNAs has been demonstrated to be localized under different conditions and developing stages thus reflecting a highly regulated mechanism and a role of mRNA localization in a broad range of cellular processes. Results Applying fluorescence in-situ -hybridization with specific riboprobes on cultured neurons and nervous tissue sections, we investigated whether the mRNAs for two metabolic enzymes, namely glycogen synthase (GS) and glycogen phosphorylase (GP), the key enzymes of glycogen metabolism, may also be targeted to neuronal processes. If it were so, this might contribute to clarify the so far enigmatic role of neuronal glycogen. We found that the mRNAs for both enzymes are localized to axonal and dendritic processes in cultured lumbar spinal motoneurons, but not in cultured trigeminal neurons. In cultured cortical neurons which do not store glycogen but nevertheless express glycogen synthase, the GS mRNA is also subject to axonal and dendritic localization. In spinal motoneurons and trigeminal neurons in situ , however, the mRNAs could only be demonstrated in the neuronal somata but not in the nerves. Conclusions We could demonstrate that the mRNAs for major enzymes of neural energy metabolism can be localized to neuronal processes. The heterogeneous pattern of mRNA localization in different culture types and developmental stages stresses that mRNA localization is a versatile mechanism for the fine-tuning of cellular events. Our findings suggest that mRNA localization for enzymes of glycogen metabolism could allow adaptation to spatial and temporal energy demands in neuronal events like growth, repair and synaptic transmission.
  • 关键词:Energy metabolism ; Fluorescence in-situ hybridization ; Glycogen phosphorylase ; Glycogen synthase ; mRNA localization ; Neuronal primary culture
国家哲学社会科学文献中心版权所有