摘要:Background Glucocorticoid released by stressful stimuli elicits various stress responses. Acute treatment with a single dose of corticosterone (CORT; predominant glucocorticoid of rats) alone has previously been shown to trigger anxiety behavior and robust dendritic hypertrophy of neurons in the basolateral amygdala (BLA). Neurons in the medial prefrontal cortex (mPFC) are also known to be highly sensitive to stress and regulate anxiety-like behaviors. Nevertheless, we know less about acute CORT-induced structural changes of other brain regions and their behavioral outcomes. In addition, the temporal profile of acute CORT effects remains to be examined. The current study investigates time course changes of dendritic architectures in the stress vulnerable brain areas, the BLA and mPFC, and their behavioral consequences after acute treatment with a single dose of CORT. Results Acute CORT treatment produced delayed onset of dendritic remodeling in the opposite direction in the BLA and mPFC with different time courses. Acute CORT induced dendritic hypertrophy of BLA spiny neurons, which was paralleled by heightened anxiety, both peaked 12 days after the treatment. Meanwhile, CORT-induced dendritic atrophy of mPFC pyramidal neurons peaked on day 6, concomitantly with impaired working memory. Both changed dendritic morphologies and altered behavioral outcomes were fully recovered. Conclusion Our results suggest that stress-induced heightened anxiety appears to be a functional consequence of dendritic remodeling of BLA neurons but not that of mPFC. Instead, stress-induced dendritic atrophy of mPFC neurons is relevant to working memory deficit. Therefore, structural changes in the BLA and the mPFC might be specifically associated with distinct behavioral symptoms observed in stress-related mental disorders. Remarkably, stress-induced dendritic remodeling in the BLA as well as mPFC is readily reversible. The related behavioral outcomes also follow the similar time course in a reversible manner. Therefore, further studies on the cellular mechanism for the plasticity of dendrites architecture might provide new insight into the etiological factors for stress-related mental illness such as posttraumatic stress disorder (PTSD).