首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Early events triggering delayed vasoconstrictor receptor upregulation and cerebral ischemia after subarachnoid hemorrhage
  • 本地全文:下载
  • 作者:Gro Klitgaard Povlsen ; Sara Ellinor Johansson ; Carl Christian Larsen
  • 期刊名称:BMC Neuroscience
  • 印刷版ISSN:1471-2202
  • 电子版ISSN:1471-2202
  • 出版年度:2013
  • 卷号:14
  • 期号:1
  • 页码:1
  • DOI:10.1186/1471-2202-14-34
  • 语种:English
  • 出版社:BioMed Central
  • 摘要:Background Upregulation of vasoconstrictor receptors in cerebral arteries, including endothelin B (ETB) and 5-hydroxytryptamine 1B (5-HT1B) receptors, has been suggested to contribute to delayed cerebral ischemia, a feared complication after subarachnoid hemorrhage (SAH). This receptor upregulation has been shown to be mediated by intracellular signalling via the mitogen activated protein kinase kinase (MEK1/2) - extracellular regulated kinase 1/2 (ERK1/2) pathway. However, it is not known what event(s) that trigger MEK-ERK1/2 activation and vasoconstrictor receptor upregulation after SAH. We hypothesise that the drop in cerebral blood flow (CBF) and wall tension experienced by cerebral arteries in acute SAH is a key triggering event. We here investigate the importance of the duration of this acute CBF drop in a rat SAH model in which a fixed amount of blood is injected into the prechiasmatic cistern either at a high rate resulting in a short acute CBF drop or at a slower rate resulting in a prolonged acute CBF drop. Results We demonstrate that the duration of the acute CBF drop is determining for a) degree of early ERK1/2 activation in cerebral arteries, b) delayed upregulation of vasoconstrictor receptors in cerebral arteries and c) delayed CBF reduction, neurological deficits and mortality. Moreover, treatment with an inhibitor of MEK-ERK1/2 signalling during an early time window from 6 to 24 h after SAH was sufficient to completely prevent delayed vasoconstrictor receptor upregulation and improve neurological outcome several days after the SAH. Conclusions Our findings suggest a series of events where 1) the acute CBF drop triggers early MEK-ERK1/2 activation, which 2) triggers the transcriptional upregulation of vasoconstrictor receptors in cerebral arteries during the following days, where 3) the resulting enhanced cerebrovascular contractility contribute to delayed cerebral ischemia.
  • 关键词:Cerebral blood flow ; Endothelin receptor ; 5-Hydroxytryptamine receptor ; Neurological outcome ; Subarachnoid hemorrhage
国家哲学社会科学文献中心版权所有