期刊名称:Environmental Health - a Global Access Science Source
印刷版ISSN:1476-069X
电子版ISSN:1476-069X
出版年度:2010
卷号:9
期号:1
页码:13
DOI:10.1186/1476-069X-9-13
语种:English
出版社:BioMed Central
摘要:Alteration of natural or historical aquatic flows can have unintended consequences for regions where waterborne diseases are endemic and where the epidemiologic implications of such change are poorly understood. The implementation of flood protection measures for a portion of an intensely monitored population in Matlab, Bangladesh, allows us to examine whether cholera outcomes respond positively or negatively to measures designed to control river flooding. Using a zero inflated negative binomial model, we examine how selected covariates can simultaneously account for household clusters reporting no cholera from those with positive counts as well as distinguishing residential areas with low counts from areas with high cholera counts. Our goal is to examine how residence within or outside a flood protected area interacts with the probability of cholera presence and the effect of flood protection on the magnitude of cholera prevalence. In Matlab, living in a household that is protected from annual monsoon flooding appears to have no significant effect on whether the household experiences cholera, net of other covariates. However, counter-intuitively, among households where cholera is reported, living within the flood protected region significantly increases the number of cholera cases. The construction of dams or other water impoundment strategies for economic or social motives can have profound and unanticipated consequences for waterborne disease. Our results indicate that the construction of a flood control structure in rural Bangladesh is correlated with an increase in cholera cases for residents protected from annual monsoon flooding. Such a finding requires attention from both the health community and from governments and non-governmental organizations involved in ongoing water management schemes.
关键词:Cholera ; Flood Protection ; Oral Rehydration Solution ; Cholera Case ; ZINB Model