期刊名称:Environmental Health - a Global Access Science Source
印刷版ISSN:1476-069X
电子版ISSN:1476-069X
出版年度:2004
卷号:3
期号:1
页码:9
DOI:10.1186/1476-069X-3-9
语种:English
出版社:BioMed Central
摘要:Inter-individual variation in normal human mammary epithelial cells in response to oxythioquinox (OTQ) is reported. Gene expression signatures resulting from chemical exposures are generally created from analysis of exposures in rat, mouse or other genetically similar animal models, limiting information about inter-individual variations. This study focused on the effect of inter-individual variation in gene expression signatures. Gene expression was studied in primary normal human mammary epithelial cells (NHMECs) derived from four women undergoing reduction mammoplasty [Cooperative Human Tissue Network (National Cancer Institute and National Disease Research Interchange)]. Gene transcription in each cell strain was analyzed using high-density oligonucleotide DNA microarrays (HuGeneFL, Affymetrix™) and changes in the expression of selected genes were verified by real-time polymerase chain reaction at extended time points (ABI). DNA microarrays were hybridized to materials prepared from total RNA that was collected after OTQ treatment for 15, 60 and 120 min. RNA was harvested from the vehicle control (DMSO) at 120 min. The gene expression profile included all genes altered by at least a signal log ratio (SLR) of ± 0.6 and p value ≤ 0.05 in three of four cell strains analyzed. RNA species were clustered in various patterns of expression highlighting genes with altered expression in one or more of the cell strains, including metabolic enzymes and transcription factors. Of the clustered RNA species, only 36 were found to be altered at one time point in three or more of the cell strains analyzed (13 up-regulated, 23 down-regulated). Cluster analysis examined the effects of OTQ on the cells with specific p53 polymorphisms. The two strains expressing the major variant of p53 had 83 common genes altered (35 increased, 48 decreased) at one or more time point by at least a 0.6 signal log ratio (SLR). The intermediate variant strains showed 105 common genes altered (80 increased, 25 decreased) in both strains. Differential changes in expression of these genes may yield biomarkers that provide insight into inter-individual variation in cancer risk. Further, specific individual patterns of gene expression may help to determine more susceptible populations.
关键词:Cell Strain ; Pesticide Exposure ; Normal Human Mammary Epithelial Cell ; Future Epidemiology Study ; Dihydrodiol Dehydrogenase