摘要:The Online Chemical Modeling Environment (OCHEM, http://ochem.eu ) is a web-based platform that provides tools for automation of typical steps necessary to create a predictive QSAR/QSPR model. The platform consists of two major subsystems: a database of experimental measurements and a modeling framework. So far, OCHEM has been limited to the processing of individual compounds. In this work, we extended OCHEM with a new ability to store and model properties of binary non-additive mixtures. The developed system is publicly accessible, meaning that any user on the Web can store new data for binary mixtures and develop models to predict their non-additive properties. The database already contains almost 10,000 data points for the density, bubble point, and azeotropic behavior of binary mixtures. For these data, we developed models for both qualitative (azeotrope/zeotrope) and quantitative endpoints (density and bubble points) using different learning methods and specially developed descriptors for mixtures. The prediction performance of the models was similar to or more accurate than results reported in previous studies. Thus, we have developed and made publicly available a powerful system for modeling mixtures of chemical compounds on the Web.
关键词:Root Mean Square Error ; Binary Mixture ; Random Forest ; QSAR Model ; Binary Liquid Mixture