首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Amoxicillin separation from pharmaceutical wastewater by high permeability polysulfone nanofiltration membrane
  • 本地全文:下载
  • 作者:Reza Derakhsheshpoor ; Maryam Homayoonfal ; Ahmad Akbari
  • 期刊名称:Journal of Environmental Health Science and Engineering
  • 印刷版ISSN:2052-336X
  • 出版年度:2013
  • 卷号:11
  • 期号:1
  • 页码:9
  • DOI:10.1186/2052-336X-11-9
  • 语种:English
  • 出版社:BioMed Central
  • 摘要:

    In this study, high permeability flat sheet polysulfone nanofiltration membranes were prepared for amoxicillin (AMX) recovery from pharmaceutical wastewater. Membrane fabrication includes two steps: raw ultrafiltration membrane synthesis by phase inversion method and nanaofiltration membrane synthesis by surface photopolymerization. Raw ultrafiltration membranes were synthesized using different molecular weights of polyethylene glycol (PEG) as pore former and different coagulation bath temperatures (CBTs). The synthesized ultrafiltration membranes were modified using UV-assisted polymerization technique and their performance in the separation of AMX at different pHs, were studied. The results showed that the more irradiation time, the smaller surface pore size. Moreover, the membranes made with higher molecular weight of PEG and coagulation bath temperatures were more susceptible for UV-modification at these conditions; fabricated membranes had higher flux as well as relatively high AMX separation. Moreover, pH enhancement increased AMX rejection by 85%. The effect of irradiation on membrane surface morphology was studied by SEM surface images and the morphological effects of pore former and coagulation bath temperatures on membrane structure were confirmed by SEM cross section images. A fairly comprehensive discussion about the effects of PEG, coagulation bath temperature and irradiation time on membrane structure and AMX recovery performance was represented in this study.

  • 关键词:Amoxicilin separation; Polysulfone membrane; High permeability nanofiltration; UV-grafting technique, Polyethylene glycol
国家哲学社会科学文献中心版权所有