首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Script Identification from Printed Indian Document Images and Performance Evaluation Using Different Classifiers
  • 本地全文:下载
  • 作者:Sk Md Obaidullah ; Anamika Mondal ; Nibaran Das
  • 期刊名称:Applied Computational Intelligence and Soft Computing
  • 印刷版ISSN:1687-9724
  • 电子版ISSN:1687-9732
  • 出版年度:2014
  • 卷号:2014
  • DOI:10.1155/2014/896128
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Identification of script from document images is an active area of research under document image processing for a multilingual/ multiscript country like India. In this paper the real life problem of printed script identification from official Indian document images is considered and performances of different well-known classifiers are evaluated. Two important evaluating parameters, namely, AAR (average accuracy rate) and MBT (model building time), are computed for this performance analysis. Experiment was carried out on 459 printed document images with 5-fold cross-validation. Simple Logistic model shows highest AAR of 98.9% among all. BayesNet and Random Forest model have average accuracy rate of 96.7% and 98.2% correspondingly with lowest MBT of 0.09 s.
国家哲学社会科学文献中心版权所有