首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:A Comparative Study of EAG and PBIL on Large-Scale Global Optimization Problems
  • 本地全文:下载
  • 作者:Imtiaz Hussain Khan
  • 期刊名称:Applied Computational Intelligence and Soft Computing
  • 印刷版ISSN:1687-9724
  • 电子版ISSN:1687-9732
  • 出版年度:2014
  • 卷号:2014
  • DOI:10.1155/2014/182973
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Estimation of Distribution Algorithms (EDAs) use global statistical information effectively to sample offspring disregarding the location information of the locally optimal solutions found so far. Evolutionary Algorithm with Guided Mutation (EAG) combines global statistical information and location information to sample offspring, aiming that this hybridization improves the search and optimization process. This paper discusses a comparative study of Population-Based Incremental Learning (PBIL), a representative of EDAs, and EAG on large-scale global optimization problems. We implemented PBIL and EAG to build an experimental setup upon which simulations were run. The performance of these algorithms was analyzed in terms of solution quality and computational cost. We found that EAG performed better than PBIL in attaining a good quality solution, but the latter performed better in terms of computational cost. We also compared the performance of EAG and PBIL with MA-SW-Chains, the winner of CEC’2010, and found that the overall performance of EAG is comparable to MA-SW-Chains.
国家哲学社会科学文献中心版权所有