首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:An Improved Fuzzy <i>c</i>-Means Clustering Algorithm Based on Shadowed Sets and PSO
  • 本地全文:下载
  • 作者:Jian Zhang ; Ling Shen
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2014
  • 卷号:2014
  • DOI:10.1155/2014/368628
  • 出版社:Hindawi Publishing Corporation
  • 摘要:To organize the wide variety of data sets automatically and acquire accurate classification, this paper presents a modified fuzzy -means algorithm (SP-FCM) based on particle swarm optimization (PSO) and shadowed sets to perform feature clustering. SP-FCM introduces the global search property of PSO to deal with the problem of premature convergence of conventional fuzzy clustering, utilizes vagueness balance property of shadowed sets to handle overlapping among clusters, and models uncertainty in class boundaries. This new method uses Xie-Beni index as cluster validity and automatically finds the optimal cluster number within a specific range with cluster partitions that provide compact and well-separated clusters. Experiments show that the proposed approach significantly improves the clustering effect.
国家哲学社会科学文献中心版权所有