期刊名称:International Journal of Computer Science and Security (IJCSS)
电子版ISSN:1985-1553
出版年度:2012
卷号:6
期号:1
页码:103-110
出版社:Computer Science Journals
摘要:Information hiding in digital audio can be used for such diverse applications as proof of ownership, authentication, integrity, secret communication, broadcast monitoring and event annotation. To achieve secure and undetectable communication, stegano-objects, and documents containing a secret message, should be indistinguishable from cover-objects, and show that documents not containing any secret message. In this respect, Steganalysis is the set of techniques that aim to distinguish between cover-objects and stegano-objects [1]. A cover audio object can be converted into a stegano-audio object via steganographic methods. In this paper we present statistical method to detect the presence of hidden messages in audio signals. The basic idea is that, the distribution of various statistical distance measures, calculated on cover audio signals and on stegano-audio signals vis-à-vis their de-noised versions, are statistically different. A distortion metric based on Signal spectrum was designed specifically to detect modifications and additions to audio media. We used the Signal spectrum to measure the distortion. The distortion measurement was obtained at various wavelet decomposition levels from which we derived high-order statistics as features for a classifier to determine the presence of hidden information in an audio signal. This paper looking at evidence in a criminal case probably has no reason to alter any evidence files. However, it is part of an ongoing terrorist surveillance might well want to disrupt the hidden information, even if it cannot be recovered