期刊名称:International Journal of Image Processing (IJIP)
电子版ISSN:1985-2304
出版年度:2009
卷号:3
期号:4
页码:143-152
出版社:Computer Science Journals
摘要:This paper compares three robust feature detection methods, they are, Scale Invariant Feature Transform (SIFT), Principal Component Analysis (PCA) -SIFT and Speeded Up Robust Features (SURF). Lowe presented SIFT [1], which was successfully used in recognition, stitching and many other applications because of its robustness. Yan Ke [2] gave a change of SIFT by using PCA to normalize the gradient patch instead of histogram. H. Bay [3] presented a faster method for SURF, which used Fast-Hessian detector. The performance of the three methods is compared for scale changes, rotation , blur, illumination changes and affine transformations, all of which uses repeatability as an evaluation measurement. Additionally, RANSAC is used to reject the inconsistent matches [4]. SIFT presents its stability in most situation except rotation and illumination changes. SURF is the fastest one with good performance as the same as SIFT, PCA-SIFT shows its advantages in rotation, blur and illumination changes.