期刊名称:International Journal of Image Processing (IJIP)
电子版ISSN:1985-2304
出版年度:2011
卷号:5
期号:4
页码:390-402
出版社:Computer Science Journals
摘要:In this paper, we present a novel extension technique to the Set Partitioning in Hierarchical Trees (SPIHT) based image compression with spatial scalability. The present modification and the preprocessing techniques provide significantly better quality (both subjectively and objectively) reconstruction at the decoder with little additional computational complexity. There are two proposals for this paper. Firstly, we propose a pre-processing scheme, called Zero-Shifting, that brings the spatial values in signed integer range without changing the dynamic ranges, so that the transformed coefficient calculation becomes more consistent. For that reason, we have to modify the initialization step of the SPIHT algorithms. The experiments demonstrate a significant improvement in visual quality and faster encoding and decoding than the original one. Secondly, we incorporate the idea to facilitate resolution scalable decoding (not incorporated in original SPIHT) by rearranging the order of the encoded output bit stream. During the sorting pass of the SPIHT algorithm, we model the transformed coefficient based on the probability of significance, at a fixed threshold of the offspring. Calling it a fixed context model and generating a Huffman code for each context, we achieve comparable compression efficiency to that of arithmetic coder, but with much less computational complexity and processing time. As far as objective quality assessment of the reconstructed image is concerned, we have compared our results with popular Peak Signal to Noise Ratio (PSNR) and with Structural Similarity Index (SSIM). Both these metrics show that our proposed work is an improvement over the original one.