期刊名称:International Journal of Image Processing (IJIP)
电子版ISSN:1985-2304
出版年度:2013
卷号:7
期号:3
页码:286-301
出版社:Computer Science Journals
摘要:Fuzzy c-means (FCM) algorithm has proved its effectiveness for image segmentation. However, still it lacks in getting robustness to noise and outliers, especially in the absence of prior knowledge of the noise. To overcome this problem, a generalized a novel multiple-kernel fuzzy cmeans (FCM) (NMKFCM) methodology with spatial information is introduced as a framework for image-segmentation problem. The algorithm utilizes the spatial neighborhood membership values in the standard kernels are used in the kernel FCM (KFCM) algorithm and modifies the membership weighting of each cluster. The proposed NMKFCM algorithm provides a new flexibility to utilize different pixel information in image-segmentation problem. The proposed algorithm is applied to brain MRI which degraded by Gaussian noise and Salt-Pepper noise. The proposed algorithm performs more robust to noise than other existing image segmentation algorithms from FCM family.