首页    期刊浏览 2025年07月20日 星期日
登录注册

文章基本信息

  • 标题:Unsupervised Classification of Images: A Review
  • 本地全文:下载
  • 作者:Mr. Abass Olaode ; Mr. Golshah Naghdy ; Dr. Catherine Todd
  • 期刊名称:International Journal of Image Processing (IJIP)
  • 电子版ISSN:1985-2304
  • 出版年度:2014
  • 卷号:8
  • 期号:5
  • 页码:325-342
  • 出版社:Computer Science Journals
  • 摘要:Unsupervised image classification is the process by which each image in a dataset is identified to be a member of one of the inherent categories present in the image collection without the use of labelled training samples. Unsupervised categorisation of images relies on unsupervised machine learning algorithms for its implementation. This paper identifies clustering algorithms and dimension reduction algorithms as the two main classes of unsupervised machine learning algorithms needed in unsupervised image categorisation, and then reviews how these algorithms are used in some notable implementation of unsupervised image classification algorithms.
  • 关键词:Image Retrieval; Image Categorisation; Unsupervised Learning; Clustering; Dimension Reduction.
国家哲学社会科学文献中心版权所有