期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2014
卷号:111
期号:52
页码:18787-18792
DOI:10.1073/pnas.1412274111
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceSeed behavior is known to be highly dependent on the temperature during seed set, but the mechanism is poorly understood. Here we show that the mother plant plays a central role in the control of progeny seed dormancy, integrating long-term temperature memories in fruit tissues using the same pathway that controls flowering time. Regulation of seed coat properties by maternal flowering time pathways effectively passes timing information across generations, aligning progeny behavior with time of year. Seasonal behavior is important for fitness in temperate environments but it is unclear how progeny gain their initial seasonal entrainment. Plants use temperature signals to measure time of year, and changes to life histories are therefore an important consequence of climate change. Here we show that in Arabidopsis the current and prior temperature experience of the mother plant is used to control germination of progeny seeds, via the activation of the florigen Flowering Locus T (FT) in fruit tissues. We demonstrate that maternal past and current temperature experience are transduced to the FT locus in silique phloem. In turn, FT controls seed dormancy through inhibition of proanthocyanidin synthesis in fruits, resulting in altered seed coat tannin content. Our data reveal that maternal temperature history is integrated through FT in the fruit to generate a metabolic signal that entrains the behavior of progeny seeds according to time of year.