首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Improved noisy population recovery, and reverse Bonami-Beckner inequality for sparse functions
  • 本地全文:下载
  • 作者:Shachar Lovett ; Jiapeng Zhang
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2014
  • 卷号:2014
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    The noisy population recovery problem is a basic statistical inference problem. Given an unknown distribution in 0 1 n with support of size k , and given access only to noisy samples from it, where each bit is flipped independently with probability 1 2 − \eps , estimate the original probability up to an additive error of \eps . We give an algorithm which solves this problem in time polynomial in ( k log log k n 1 \eps ) . This improves on the previous algorithm of Wigderson and Yehudayoff [FOCS 2012] which solves the problem in time polynomial in ( k log k n 1 \eps ) . Our main technical contribution, which facilitates the algorithm, is a new reverse Bonami-Beckner inequality for the L 1 norm of sparse functions.

国家哲学社会科学文献中心版权所有