首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Narrow Proofs May Be Maximally Long
  • 本地全文:下载
  • 作者:Albert Atserias ; Massimo Lauria ; Jakob Nordström
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2014
  • 卷号:2014
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    We prove that there are 3-CNF formulas over n variables that can be refuted in resolution in width w but require resolution proofs of size n^Omega(w). This shows that the simple counting argument that any formula refutable in width w must have a proof in size n^O(w) is essentially tight. Moreover, our lower bound generalizes to polynomial calculus resolution (PCR) and Sherali-Adams, implying that the corresponding size upper bounds in terms of degree and rank are tight as well. Our results do not extend all the way to Lasserre, however, where the formulas we study have proofs of constant rank and size polynomial in both n and w.

  • 关键词:degree ; Lasserre ; lower bound ; PCR ; Polynomial Calculus ; Rank ; Resolution ; Sherali-Adams ; size ; width
国家哲学社会科学文献中心版权所有