期刊名称:International Journal of Energy and Environment
印刷版ISSN:2076-2895
电子版ISSN:2076-2909
出版年度:2014
卷号:5
期号:4
页码:505-520
出版社:International Energy and Environment Foundation (IEEF)
摘要:In this paper, a two-dimensional Computational Fluid Dynamics (CFD) study of the performance of a H-Darrieus turbine with three twisted blade had been carried out. The chord length of each blade is 5cm and the blade height is considered to be same for all the rotors. A two dimensional (2D) model of the turbine was designed in CATIA V5R19 software and a k-epsilon turbulence closure was adopted with the unstructured mesh generated around the rotor modeled in GAMBIT 2.3.16. The inlet velocities and the rotational speeds are taken from the experimental results and the CFD analysis was carried out in CFD Code-FLUENT 6.3.26. From the CFD analysis, power coefficient (Cp) and torque coefficient (Ct) at three different H/D ratios of 1.13, 1.31 and 1.55 respectively were calculated and compared with available experimental results. The computational analysis showed that the highest values of Cp (0.525) and Ct (0.95) were obtained at H/D ratios of 1.31 and 1.13 respectively. The deviation of computational Cp from experimental Cp was within ±3.08 % and that of computational Ct from experimental Ct was within ±1.106 %. A study of the flow behaviour around the rotor was also carried out using the pressure contours and velocity vectors plots. A maximum pressure drop is obtained for H/D ratio of 1.31 and a vortex reattachment near rear blade of rotor with H/D ratio of 1.31 was observed from the pressure contours and velocity vectors plots. The vortex attachment to the blade of the rotor enhances the lift coefficient of the rotor which helps in improving the power coefficient of the rotor. The comparison between the computational results and previous experimental work is pretty encouraging .