首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Strong Tracking Unscented Kalman Filtering Algorithm Based-on Satellite Attitude Determination System
  • 本地全文:下载
  • 作者:Min Li ; Bao-long Zhu ; Song-yan Wang
  • 期刊名称:International Journal of Future Generation Communication and Networking
  • 印刷版ISSN:2233-7857
  • 出版年度:2014
  • 卷号:7
  • 期号:3
  • 页码:155-166
  • DOI:10.14257/ijfgcn.2014.7.3.14
  • 出版社:SERSC
  • 摘要:Combined with strong tracking filter (STF) theory, the Strong Tracking Square-Root Unscented Kalman Filter (UKF)-based satellite attitude determination algorithm is proposed in this paper. QR decomposition and Cholesyk decomposition are introduced in this paper, which improves the stability of filter. In addition, by introduced adaptive fading factor, the prediction error covariance matrix can be adjusted, thus it can guarantee the strong tracking performance of the proposed algorithm. At last, simulation results show that strong tracking square-root UKF has better stability, robustness and mutation status tracking capability than Square-Root UKF and Strong Tracking UKF.
  • 关键词:Quaternion; Cholesky decomposition; QR decomposition; satellite attitude ; determination system; Strong Tracking Square-Root Unscented Kalman Filter (STSRUKF)
国家哲学社会科学文献中心版权所有