首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Integrating Prosodic and Lexical Cues for Automatic Topic Segmentation
  • 本地全文:下载
  • 作者:Gökhan Tür ; Dilek Hakkani-Tür ; Andreas Stolcke
  • 期刊名称:Computational Linguistics
  • 印刷版ISSN:0891-2017
  • 电子版ISSN:1530-9312
  • 出版年度:2001
  • 卷号:27
  • 期号:1
  • 页码:31-57
  • DOI:10.1162/089120101300346796
  • 语种:English
  • 出版社:MIT Press
  • 摘要:We present a probabilistic model that uses both prosodic and lexical cues for the automatic segmentation of speech into topically coherent units. We propose two methods for combining lexical and prosodic information using hidden Markov models and decision trees. Lexical information is obtained from a speech recognizer, and prosodic features are extracted automatically from speech waveforms. We evaluate our approach on the Broadcast News corpus, using the DARPA-TDT evaluation metrics. Results show that the prosodic model alone is competitive with word-based segmentation methods. Furthermore, we achieve a significant reduction in error by combining the prosodic and word-based knowledge sources.
国家哲学社会科学文献中心版权所有