首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Learning Representations for Weakly Supervised Natural Language Processing Tasks
  • 本地全文:下载
  • 作者:Fei Huang ; Arun Ahuja ; Doug Downey
  • 期刊名称:Computational Linguistics
  • 印刷版ISSN:0891-2017
  • 电子版ISSN:1530-9312
  • 出版年度:2014
  • 卷号:40
  • 期号:1
  • 页码:85-120
  • DOI:10.1162/COLI_a_00167
  • 语种:English
  • 出版社:MIT Press
  • 摘要:Finding the right representations for words is critical for building accurate NLP systems when domain-specific labeled data for the task is scarce. This article investigates novel techniques for extracting features from n -gram models, Hidden Markov Models, and other statistical language models, including a novel Partial Lattice Markov Random Field model. Experiments on part-of-speech tagging and information extraction, among other tasks, indicate that features taken from statistical language models, in combination with more traditional features, outperform traditional representations alone, and that graphical model representations outperform n -gram models, especially on sparse and polysemous words.
国家哲学社会科学文献中心版权所有