首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Sampling Tree Fragments from Forests
  • 本地全文:下载
  • 作者:Tagyoung Chung ; Licheng Fang ; Daniel Gildea
  • 期刊名称:Computational Linguistics
  • 印刷版ISSN:0891-2017
  • 电子版ISSN:1530-9312
  • 出版年度:2014
  • 卷号:40
  • 期号:1
  • 页码:203-229
  • DOI:10.1162/COLI_a_00170
  • 语种:English
  • 出版社:MIT Press
  • 摘要:We study the problem of sampling trees from forests, in the setting where probabilities for each tree may be a function of arbitrarily large tree fragments. This setting extends recent work for sampling to learn Tree Substitution Grammars to the case where the tree structure (TSG derived tree) is not fixed. We develop a Markov chain Monte Carlo algorithm which corrects for the bias introduced by unbalanced forests, and we present experiments using the algorithm to learn Synchronous Context-Free Grammar rules for machine translation. In this application, the forests being sampled represent the set of Hiero-style rules that are consistent with fixed input word-level alignments. We demonstrate equivalent machine translation performance to standard techniques but with much smaller grammars.
国家哲学社会科学文献中心版权所有