首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:A Survey of Arabic Named Entity Recognition and Classification
  • 本地全文:下载
  • 作者:Khaled Shaalan
  • 期刊名称:Computational Linguistics
  • 印刷版ISSN:0891-2017
  • 电子版ISSN:1530-9312
  • 出版年度:2014
  • 卷号:40
  • 期号:2
  • 页码:469-510
  • DOI:10.1162/COLI_a_00178
  • 语种:English
  • 出版社:MIT Press
  • 摘要:As more and more Arabic textual information becomes available through the Web in homes and businesses, via Internet and Intranet services, there is an urgent need for technologies and tools to process the relevant information. Named Entity Recognition (NER) is an Information Extraction task that has become an integral part of many other Natural Language Processing (NLP) tasks, such as Machine Translation and Information Retrieval. Arabic NER has begun to receive attention in recent years. The characteristics and peculiarities of Arabic, a member of the Semitic languages family, make dealing with NER a challenge. The performance of an Arabic NER component affects the overall performance of the NLP system in a positive manner. This article attempts to describe and detail the recent increase in interest and progress made in Arabic NER research. The importance of the NER task is demonstrated, the main characteristics of the Arabic language are highlighted, and the aspects of standardization in annotating named entities are illustrated. Moreover, the different Arabic linguistic resources are presented and the approaches used in Arabic NER field are explained. The features of common tools used in Arabic NER are described, and standard evaluation metrics are illustrated. In addition, a review of the state of the art of Arabic NER research is discussed. Finally, we present our conclusions. Throughout the presentation, illustrative examples are used for clarification.
国家哲学社会科学文献中心版权所有