首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Identifying Sentiment in Web Multi-topic Documents
  • 本地全文:下载
  • 作者:Na Fan
  • 期刊名称:International Journal of Wireless and Microwave Technologies(IJWMT)
  • 印刷版ISSN:2076-1449
  • 电子版ISSN:2076-9539
  • 出版年度:2012
  • 卷号:2
  • 期号:1
  • 页码:10-16
  • 出版社:MECS Publisher
  • 摘要:Most of web documents coverage multiple topic. Identifying sentiment of multi-topic documents is a challenge task. In this paper, we proposed a new method to solve this problem. The method firstly reveals the latent topical facets in documents by Parametric Mixture Model. By focusing on modeling the generation process of a document with multiple topics, we can extract specific properties of documents with multiple topics. PMM models documents with multiple topics by mixing model parameters of each single topic. In order to analyze sentiment of each topic, conditional random fields techniques is used to identify sentiment. Empirical experiments on test datasets show that this approach is effective for extracting subtopics and revealing sentiments of each topic. Moreover, this method is quite general and can be applied to any kinds of text collections.
  • 关键词:Analyzing Sentiment;Multi-topic Text;Parametric Mixture Model
国家哲学社会科学文献中心版权所有