Glomerular filtration rate (GFR) is a fundamental parameter in assessing renal function and predicting the progression of chronic renal disease. Because the use of serum creatinine has several disadvantages, many studies have investigated the use of cystatin C for estimating GFR. We compared creatinine clearance and GFR with formulas using serum creatinine and cystatin C.
MethodsWe retrospectively analyzed 211 patients with various renal diseases and classified them into two groups according to creatinine clearance (Group 1: CrCl >90 mL/min/1.73m2, Group 2: CrCl <90 mL/min/1.73m2). We measured serum creatinine, cystatin C, and creatinine clearance. We calculated GFR using the Schwartz, Counahan, Filler and Lepage, Bokencamp et al, and Grubb et al formulas.
ResultsGFR determined by the Schwartz formula had the highest correlation to creatinine clearance (r=0.415, P =0.00). GFR determined by various formulas using cystatin C had lower correlation to creatinine clearance (r=0.187, r=0.187, r=0.291). The Schwartz and Counahan formulas showed greater diagnostic accuracy in detecting decreased GFR than cystatin C in group 2 (areas under the curve: Schwartz, 0.596; Counahan, 0.572; Filler, 0.512; Bokencamp, 0.508; and Grubb, 0.514).
ConclusionGFR determined by the Schwartz and Counahan formulas using serum creatinine showed higher correlation coefficient than that determined by formulas using cystatin C. The formulas using cystatin C were not superior to those using serum creatinine in detecting decreased GFR. Cystatin C measurement was not satisfactory for assessing GFR in patients whose renal function was not severely decreased.