首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Biological effects of a root conditioning agent for dentin surface modification in vitro
  • 本地全文:下载
  • 作者:Lee, Jue-Yeon ; Seol, Yang-Jo ; Park, Jang-Ryul
  • 期刊名称:The Journal of the Korean Academy of Periodontology
  • 印刷版ISSN:0250-3352
  • 出版年度:2010
  • 卷号:40
  • 期号:6
  • 页码:257-264
  • DOI:10.5051/jpis.2010.40.6.257
  • 语种:English
  • 出版社:Korean Academy of Periodontology
  • 摘要:Purpose

    Connective tissue reattachment to periodontally damaged root surfaces is one of the most important goals of periodontal therapy. The aim of this study was to develop a root conditioning agent that can demineralize and detoxify the infected root surface.

    Methods

    Dentin slices obtained from human teeth were treated with a novel root planing agent for 2 minutes and then washed with phosphate-buffered saline. Smear layer removal and type I collagen exposure were observed by scanning electron microscopy (SEM) and type I collagen immunostaining, respectively. Cell attachment and lipopolysaccharides (LPS) removal demonstrated the efficiency of the root conditioning agent.

    Results

    SEM revealed that the smear layer was entirely removed and the dentinal tubules were opened by the experimental gel. Type I collagen was exposed on the surfaces of the dentin slices treated by the experimental gel, which were compared with dentin treated with other root planing agents. Dentin slices treated with the experimental gel showed the highest number of attached fibroblasts and flattened cell morphology. The agar diffusion assay demonstrated that the experimental gel also has effective antimicrobial activity. Escherichia coli LPS were effectively removed from well plates by the experimental gel.

    Conclusions

    These results demonstrated that this experimental gel is a useful tool for root conditioning of infected root surfaces and can also be applied for detoxification of ailing implant surface threads.

  • 关键词:cell attachment; Collagen; Demineralization; Lipopolysaccharide; Smear layer
国家哲学社会科学文献中心版权所有