首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:N-acetylcysteine and the human serum components that inhibit bacterial invasion of gingival epithelial cells prevent experimental periodontitis in mice
  • 本地全文:下载
  • 作者:Alam, Jehan ; Baek, Keum Jin ; Choi, Yun Sik
  • 期刊名称:The Journal of the Korean Academy of Periodontology
  • 印刷版ISSN:0250-3352
  • 出版年度:2014
  • 卷号:44
  • 期号:6
  • 页码:266-273
  • DOI:10.5051/jpis.2014.44.6.266
  • 语种:English
  • 出版社:Korean Academy of Periodontology
  • 摘要:Purpose

    We previously reported that human serum significantly reduces the invasion of various oral bacterial species into gingival epithelial cells in vitro . The aims of the present study were to characterize the serum component(s) responsible for the inhibition of bacterial invasion of epithelial cells and to examine their effect on periodontitis induced in mice.

    Methods

    Immortalized human gingival epithelial (HOK-16B) cells were infected with various 5- (and 6-) carboxy-fluorescein diacetate succinimidyl ester-labeled oral bacteria, including Fusobacterium nucleatum , Provetella intermedia , Porphyromonas gingivalis , and Treponiema denticola , in the absence or presence of three major serum components (human serum albumin [HSA], pooled human IgG [phIgG] and α1-antitrypsin). Bacterial adhesion and invasion were determined by flow cytometry. The levels of intracellular reactive oxygen species (ROS) and activation of small GTPases were examined. Experimental periodontitis was induced by oral inoculation of P. gingivalis and T. denticola in Balb/c mice.

    Results

    HSA and phIgG, but not α1-antitrypsin, efficiently inhibited the invasion of various oral bacterial species into HOK-16B cells. HSA but not phIgG decreased the adhesion of F. nucleatum onto host cells and the levels of intracellular ROS in HOK-16B cells. N-acetylcysteine (NAC), a ROS scavenger, decreased both the levels of intracellular ROS and invasion of F. nucleatum into HOK-16B cells, confirming the role of ROS in bacterial invasion. Infection with F. nucleatum activated Rac1, a regulator of actin cytoskeleton dynamics. Not only HSA and NAC but also phIgG decreased the F. nucleatum -induced activation of Rac1. Furthermore, both HSA plus phIgG and NAC significantly reduced the alveolar bone loss in the experimental periodontitis induced by P. gingivalis and T. denticola in mice.

    Conclusions

    NAC and the serum components HSA and phIgG, which inhibit bacterial invasion of oral epithelial cells in vitro , can successfully prevent experimental periodontitis.

    Graphical Abstract

  • 关键词:Albumins; Bacteria; Epithelial Cells; Immunoglobulin G; periodontitis
国家哲学社会科学文献中心版权所有