首页    期刊浏览 2025年04月30日 星期三
登录注册

文章基本信息

  • 标题:Kernel-Based Information Criterion
  • 本地全文:下载
  • 作者:Somayeh Danafar ; Kenji Fukumizu ; Faustino Gomez
  • 期刊名称:Computer and Information Science
  • 印刷版ISSN:1913-8989
  • 电子版ISSN:1913-8997
  • 出版年度:2015
  • 卷号:8
  • 期号:1
  • 页码:10
  • DOI:10.5539/cis.v8n1p10
  • 出版社:Canadian Center of Science and Education
  • 摘要:

    This paper introduces Kernel-based Information Criterion (KIC) for model selection in regression analysis. The kernel-based complexity measure in KIC efficiently computes the interdependency between parameters of the model using a novel variable-wise variance and yields selection of better, more robust regressors. Experimental results show superior performance on both simulated and real data sets compared to Leave-One-Out Cross-Validation (LOOCV), kernel-based Information Complexity (ICOMP), and maximum log of marginal likelihood in Gaussian Process Regression (GPR).

国家哲学社会科学文献中心版权所有