首页    期刊浏览 2024年07月05日 星期五
登录注册

文章基本信息

  • 标题:Effect of increasing CO2 on the terrestrial carbon cycle
  • 本地全文:下载
  • 作者:David Schimel ; Britton B. Stephens ; Joshua B. Fisher
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2015
  • 卷号:112
  • 期号:2
  • 页码:436-441
  • DOI:10.1073/pnas.1407302112
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:SignificanceFeedbacks from terrestrial ecosystems to atmospheric CO2 concentrations contribute the second-largest uncertainty to projections of future climate. These feedbacks, acting over huge regions and long periods of time, are extraordinarily difficult to observe and quantify directly. We evaluated in situ, atmospheric, and simulation estimates of the effect of CO2 on carbon storage, subject to mass balance constraints. Multiple lines of evidence suggest significant tropical uptake for CO2, approximately balancing net deforestation and confirming a substantial negative global feedback to atmospheric CO2 and climate. This reconciles two approaches that have previously produced contradictory results. We provide a consistent explanation of the impacts of CO2 on terrestrial carbon across the 12 orders of magnitude between plant stomata and the global carbon cycle. Feedbacks from the terrestrial carbon cycle significantly affect future climate change. The CO2 concentration dependence of global terrestrial carbon storage is one of the largest and most uncertain feedbacks. Theory predicts the CO2 effect should have a tropical maximum, but a large terrestrial sink has been contradicted by analyses of atmospheric CO2 that do not show large tropical uptake. Our results, however, show significant tropical uptake and, combining tropical and extratropical fluxes, suggest that up to 60% of the present-day terrestrial sink is caused by increasing atmospheric CO2. This conclusion is consistent with a validated subset of atmospheric analyses, but uncertainty remains. Improved model diagnostics and new space-based observations can reduce the uncertainty of tropical and temperate zone carbon flux estimates. This analysis supports a significant feedback to future atmospheric CO2 concentrations from carbon uptake in terrestrial ecosystems caused by rising atmospheric CO2 concentrations. This feedback will have substantial tropical contributions, but the magnitude of future carbon uptake by tropical forests also depends on how they respond to climate change and requires their protection from deforestation.
  • 关键词:climate feedback ; carbon budget ; tropics ; atmospheric transport
国家哲学社会科学文献中心版权所有