首页    期刊浏览 2024年07月09日 星期二
登录注册

文章基本信息

  • 标题:Cryptic carbon and sulfur cycling between surface ocean plankton
  • 本地全文:下载
  • 作者:Bryndan P. Durham ; Shalabh Sharma ; Haiwei Luo
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2015
  • 卷号:112
  • 期号:2
  • 页码:453-457
  • DOI:10.1073/pnas.1413137112
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:SignificanceIn the surface ocean, organic matter released by phytoplankton and degraded by heterotrophic bacteria is a key step in the carbon cycle. Compounds important in this trophic link are poorly known, in part because of the thousands of chemicals making up marine dissolved organic matter. We cocultured a Roseobacter clade bacterium with the diatom Thalassiosira pseudonana and used gene expression changes to assay for compounds passed to the bacterium. A C3-sulfonate with no previously known role in the microbial food web was identified and subsequently shown to be an abundant diatom metabolite and actively cycling compound in seawater. This work identifies a missing component of the marine carbon and sulfur cycles. About half the carbon fixed by phytoplankton in the ocean is taken up and metabolized by marine bacteria, a transfer that is mediated through the seawater dissolved organic carbon (DOC) pool. The chemical complexity of marine DOC, along with a poor understanding of which compounds form the basis of trophic interactions between bacteria and phytoplankton, have impeded efforts to identify key currencies of this carbon cycle link. Here, we used transcriptional patterns in a bacterial-diatom model system based on vitamin B12 auxotrophy as a sensitive assay for metabolite exchange between marine plankton. The most highly up-regulated genes (up to 374-fold) by a marine Roseobacter clade bacterium when cocultured with the diatom Thalassiosira pseudonana were those encoding the transport and catabolism of 2,3-dihydroxypropane-1-sulfonate (DHPS). This compound has no currently recognized role in the marine microbial food web. As the genes for DHPS catabolism have limited distribution among bacterial taxa, T. pseudonana may use this sulfonate for targeted feeding of beneficial associates. Indeed, DHPS was both a major component of the T. pseudonana cytosol and an abundant microbial metabolite in a diatom bloom in the eastern North Pacific Ocean. Moreover, transcript analysis of the North Pacific samples provided evidence of DHPS catabolism by Roseobacter populations. Other such biogeochemically important metabolites may be common in the ocean but difficult to discriminate against the complex chemical background of seawater. Bacterial transformation of this diatom-derived sulfonate represents a previously unidentified and likely sizeable link in both the marine carbon and sulfur cycles.
  • 关键词:bacteria ; diatoms ; DHPS ; sulfonates ; vitamin B12
国家哲学社会科学文献中心版权所有