首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:Antimalarial 4(1H)-pyridones bind to the Qi site of cytochrome bc1
  • 本地全文:下载
  • 作者:Michael J. Capper ; Paul M. O’Neill ; Nicholas Fisher
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2015
  • 卷号:112
  • 期号:3
  • 页码:755-760
  • DOI:10.1073/pnas.1416611112
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:SignificanceX-ray crystallography greatly benefits drug discovery work by elucidating information about the binding of drug compounds to their target. Using this information, changes to the compounds can be made in a process known as rational drug design. Cytochrome bc1 is a proven drug target in the treatment and prevention of malaria, a disease that kills over half a million people each year and many compounds have been developed to inhibit cytochrome bc1. Here we show the binding of two such compounds in X-ray crystal structures, which reveal an unexpected binding site. This work opens up a new area for antimalarial research and reinforces the need for structural information in drug design. Cytochrome bc1 is a proven drug target in the prevention and treatment of malaria. The rise in drug-resistant strains of Plasmodium falciparum, the organism responsible for malaria, has generated a global effort in designing new classes of drugs. Much of the design/redesign work on overcoming this resistance has been focused on compounds that are presumed to bind the Qo site (one of two potential binding sites within cytochrome bc1) using the known crystal structure of this large membrane-bound macromolecular complex via in silico modeling. Cocrystallization of the cytochrome bc1 complex with the 4(1H)-pyridone class of inhibitors, GSK932121 and GW844520, that have been shown to be potent antimalarial agents in vivo, revealed that these inhibitors do not bind at the Qo site but bind at the Qi site. The discovery that these compounds bind at the Qi site may provide a molecular explanation for the cardiotoxicity and eventual failure of GSK932121 in phase-1 clinical trial and highlight the need for direct experimental observation of a compound bound to a target site before chemical optimization and development for clinical trials. The binding of the 4(1H)-pyridone class of inhibitors to Qi also explains the ability of this class to overcome parasite Qo-based atovaquone resistance and provides critical structural information for future design of new selective compounds with improved safety profiles.
  • 关键词:malaria ; cytochrome bc 1 ; drug discovery ; Plasmodium falciparum ; membrane protein
国家哲学社会科学文献中心版权所有